KENDRIYA VIDYALAYA SANGATHAN

Marking Scheme - Mathematical Olympiad - Stage I - 2015

Note: All alternate solutions are to be accepted at par. Please asses what a student know in place of what he doesn't know.

1.	When the tens digit of a three digit number	\overline{abc} is deleted, a two digit
	number \overline{ac} is formed . How many numbers	abc are there such that

$$abc = 9ac + 4c$$
.

Soln. Let the three digit no. \overline{abc} be 100a+10b+c and similarly \overline{ac} =10a+c

2 marks

As per given equation 100a+10b+c=9*(10a+c)+4c

which gives on simplification

$$5(a+b)=6c$$

3 marks

Since a,b,c are integers between 0 and 9 and $a\neq 0$, The only possibility is a+b=6 and c=5

so by taking b=6-a, six possible numbers arise by taking a=1,2,3,4,5,6

So there are six three digit numbers.

2 marks

2. Let $p(x) = x^2 + bx + c$ where b and c are integers. If p(x) is a factor of both $x^4 + 6x^2 + 25$ and $3x^4 + 4x^2 + 28x + 5$, find the value of p(1)?

$$X^4+6x^2+25=(x^4+10x^2+25)-4x^2$$

1 mark

 $\Rightarrow (x^2+5)^2-(2x)^2$

Soln.

2 marks

 $\Rightarrow (X^2+5+2x)(x^2+5-2x)$

2 marks

 \Rightarrow So p(x) is either x^2+5+2x or x^2+5-2x

 \Rightarrow By long division we find that only x^2-2x+5 is factor of $3x^4+4x^2+28x+5$.

$$\Rightarrow$$
 So $3x^4+4x^2+28x+5=(x^2-2x+5)(3x^2+6x+1)$

3 marks

 \Rightarrow p(x)= x²-2x+5

 \Rightarrow p(1)=4

2 marks

3. A square is inscribed in an equilateral triangle. Find the ratio of area of the square to that of the triangle.

Solution:

Fig 1 mark

Let the side of square be 'a' so $AG = \frac{\sqrt{3}}{2}a$ and GD = a

So AD=AG+GD=
$$(\frac{\sqrt{3}}{2}+1)$$
 a -----(1)

3 marks

If 'b' be the side of equilateral triangle . Altitude of triangle is AD= $\frac{\sqrt{3}}{2}$ b------ (2)

From 1 and 2,
$$(\frac{\sqrt{3}}{2} + 1) a = \frac{\sqrt{3}}{2} b$$

So
$$a = \frac{\sqrt{3}}{2 + \sqrt{3}}b$$

3 marks

Now area of square = $a^2 = \frac{3}{7 + 4\sqrt{3}}b^2$ (3)

2 marks

Area of Triangle=
$$\frac{\sqrt{3}}{4}h^2$$
 (4)

Ratio of areas of Square to Triangle: $\frac{3}{7+4\sqrt{3}}b^2 \cdot \frac{\sqrt{3}}{4}b^2$

$$\frac{\sqrt{3}}{7+4\sqrt{3}}:\frac{1}{4}=4\sqrt{3}:7+4\sqrt{3}$$

2 marks

4. (a) **Prove that** $\frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \dots + \frac{1}{98} - \frac{1}{99} + \frac{1}{100} > \frac{1}{5}$

$$\frac{\left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{4} - \frac{1}{5}\right) + \dots + \left(\frac{1}{98} - \frac{1}{99}\right) + \frac{1}{100} }{\text{Soln.}}$$
Soln.
$$\frac{1}{6} + \frac{1}{20} + \dots + \frac{1}{9702} + \frac{1}{100}$$

Now Let us find
$$\frac{1}{6} + \frac{1}{20} = \frac{13}{60} = \frac{12+1}{60} = \frac{12}{60} + \frac{1}{60} = \frac{1}{5} + \frac{1}{60} > \frac{1}{5}$$
 1 mark

So
$$(\frac{1}{2} - \frac{1}{3}) + (\frac{1}{4} - \frac{1}{5}) + \dots + (-\frac{1}{99} + \frac{1}{100}) \ge \frac{1}{5}$$

1 mark

Find the largest prime factor of $3^{12} + 2^{12} - 2.6^6$ Soln

$$3^{6})^{2} + (2^{6})^{2} - 2.3^{6}.2^{6}$$

$$\Rightarrow (3^{6} - 2^{6})^{2} = \{(3^{3})^{2} - (2^{3})^{2}\}^{2}$$

$$\Rightarrow \{(3^{3} + 2^{3})(3^{3} - 2^{3})\}^{2}$$

$$\Rightarrow \{(3 - 2)(9 + 4 + 6)(3^{3} + 2^{3})\}^{2}$$

$$\Rightarrow \{(19)(3 + 2)(9 + 4 - 6)\}^{2}$$

$$\Rightarrow \{(19)(5)(7)\}^{2}$$
I mark

So largest prime factor is 19

5. Surface area of a sphere A is 300 % more than the surface area of another sphere B. If the volume of sphere B is p% less than the volume of sphere A,find the value of 'p'.

Soln. Let the radius of sphere B be 'r'

So its surface area = $4\pi r^2$

Let surface area of A be S which is 300% more than that of B

$$\frac{(s-4\pi r^2)}{4\pi r^2} X100 = 300$$

$$=> s-4\pi r^2 = 12\pi r^2$$

$$=> s=16\pi r^2$$
1 mark

Let radius of sphere A be R so $4\pi R^2$ = $16\pi r^2$

⇒ We get R=2r

2 marks

 \Rightarrow Now volume of sphere A = $\frac{4}{3}\pi R^3$

$$\Rightarrow \frac{4}{3}\pi(2r)^3 = \frac{32}{3}\pi r^3$$

2 marks

Volume of sphere B be = $\frac{4}{3}\pi r^3$ which is p% less than that of A

$$\frac{\frac{32\pi r^3}{3} - \frac{4}{3}\pi r^3}{\frac{32}{3}\pi r^3} \times 100 = p$$

$$\frac{\frac{28}{3}\pi r^3}{\frac{32}{3}\pi r^3}x100 = p$$

2 marks

$$\Rightarrow p = \frac{700}{8} = 87.5$$

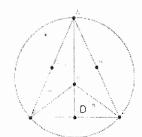
6. ABC is an isosceles triangle in which AB=AC=25 cm and BC=14 cm Find the difference of the circum-radius and in-radius of the triangle.

Soln. Draw AD⊥BC as AB=AC so D will be mid point of BC

Now we have $AB^2 = AD^2 + BD^2$

$$=> (25)^2 = (AD)^2 + (7)^2$$

=> $AD = 24$


2marks

Let O be the In-centre of the triangle. So OD is in-radius.

Now area of
$$ABC = \frac{1}{2}BCXAD = \frac{1}{2}X14X24 = 168cm^2$$
 (1) 2 marks

Also are of Triangle ABC =
$$\frac{1}{2}(AB + BC + AC) * r$$
 where r is in-radius.

From (1) and (2) we get
$$r = \frac{21}{4} cm$$
.

. Let P be the Circumcentre of the Triangle ABC.

Let PA=PB=PC=R == the Circum-radius

So PD
$$=24-R$$

Now from Triangle PBD , $PR^2=PD^2+BD^2$

$$\Rightarrow R^2 = (24-R)^2 + 7^2$$

$$\Rightarrow$$
 R²=576-48R+R²+49

$$\Rightarrow$$
 R= $\frac{625}{48}$

3 marks

Now required difference of two radii= $(\frac{625}{48} - \frac{21}{4})$

$$=\frac{373}{48}cm.$$

1 mark

7. AB and BC are two equal chords of a circle of length $2\sqrt{5}$ cm each . If radius of the circle is 5 cm, find the length of the chord AC . Soln. Let O be the centre of the circle Join OA, OB and OC . As AB=BC so OB will be the perpendicular bisector of AC

fig- 1 mark

Let OB intersect AC at D and perpendicular to AD, Ler OD=x, so BD=5-x

Now from Triangle OAD, OA²=AD²+OD²

3 marks

$$\Rightarrow$$
 25=AD²+x²

⇒ From triangle BDA we get, AB²=AD²+BD²

$$\Rightarrow$$
 $(2\sqrt{5})^2 = AD^2 + (5-x)^2$

 \Rightarrow From (1) and (2) we get x=3

⇒ Putting this value we get AD=4

⇒ So AC=2AD=8 cm.

3 marks

8. Two dice are thrown simultaneously. Find the sum of the probability of "getting a prime number as a sum" and probability of "getting a doublet of prime numbers."

Soln. Total No. of outcomes=6X6=36

Outcomes for getting a prime number as sum are:

(1,1),(1,2),(1,4),(1,6),(2,1),(2,3),(2,5),(3,2),(3,4),(4,1),(4,3),(5,2),(5,6),(6,1) and (6,5) = 15 outcomes

3 marks

So probability (Sum as Prime number) = $\frac{15}{36}$

1 Mark

Further , Prime doublets are (2,2),(3,3),(5,5)

2 marks

So probability of a doublet as prime No. = $\frac{3}{36}$

2 marks

Now required probability = $\frac{15}{36} + \frac{3}{36} = \frac{1}{2}$

2 marks

9. A person starts from a place P towards another place Q at a speed of 30 km/h. After every 12 minutes, he increases his speed by 5 km/h. If the distance between P and Q is 51 km., find the time taken by him to cover the whole distance.

Soln. Let he covers the distance in n intervals of 12 minutes each.

In the first interval speed is 30 km/h so distance travelled= 30X12Min=6km.

In the 2nd interval speed is 35km/h, so distance= 35X12min= 7km.

And so on.....

2 marks

So total distance travelled in n intervals= 6+7+8+.....up to n terms.

$$\Rightarrow \frac{n}{2} \{2 \times 6 + (n-1) \times 1\}$$

$$\Rightarrow \frac{n^2 + 11n}{2} km_{=51 \text{ km (given)}}$$
2 marks

2 marks

- \Rightarrow n²+11n-102 =0
- ⇒ on simplification it gives n= -17(rejected) and 6

3 marks

- ⇒ so there are 6 intervals of 12 min each.
- ⇒ Hence total time 6X12=72 minutes. 1 mark
- 10. Solve for 'x';

$$4(x - \frac{1}{x})^2 + 8(x + \frac{1}{x}) = 29$$

Soln. The equation can be written as

$$4(x^{2} + \frac{1}{x^{2}} - 2) + 8(x + \frac{1}{x}) - 29 = 0$$

$$= > 4(x^{2} + \frac{1}{x^{2}}) + 8(x + \frac{1}{x}) - 37 = 0$$
3 marks

$$x + \frac{1}{x} = y$$
Let

So the equation reduces to $4(y^2-2)+8y-37=0$

$$\Rightarrow 4y^2 + 8y - 45 = 0$$

$$\Rightarrow (2y-5)(2y+9)=0$$

$$\Rightarrow$$
 Y=5/2 or y=-9/2

3 marks

$$\Rightarrow \text{ When y=5/2 we get } x + \frac{1}{x} = \frac{5}{2}$$

$$\Rightarrow$$
 2x²-5x+2=0

$$\Rightarrow$$
 (x-2)(2x-1)=0 this gives x=2 or $\frac{1}{2}$

2 marks

$$\Rightarrow \text{ We get x=} \frac{-9 \pm \sqrt{65}}{4}$$

2 marks